アパレルビジネスにおける実践的なAI活用3パターンと生成AIの活用術とは
やや熱が落ち着いたとはいえ、AIを活用した事業改革というものに対して、無限の可能性を感じているアパレル業界関係者は少なくない。特に「生成AI」は、あたかも人間が文脈を判断し、その文脈に沿って文章や画像などを自動的にアウトプットするもので、これへの期待は大きい。例えば、褒めれば喜んでいるような返答がなされ、否定するとムッとしたような回答を返してくるので、「裏側に実際の人間がいるのではないか」と錯覚するほどだ。
しかし、こうした技術がアパレルビジネスのどこに役立つのかという話になると、まだほとんどの人が具体的なイメージを持てていないようだ。SaaS(サービスとしてのソフトウェア)型MD(マーチャンダイジング、商品政策)にAI予測は通用しないことは論理的に実証済みだ。MDは個別企業の余剰在庫やブランドの癖などにより変化するし、すべての服はユニクロのベーシック衣料と競合関係にあるからだ。
それでは、この技術は枯れてしまったのかというと、私はそうは思わない。いわゆるAIベンダーが業務に精通していないことと、事業をしている者がAIに過剰な期待を抱きすぎているから、AIをビジネスに適切に活用できていないのだ。AIベンダーと小売の実務、双方を経験した私の考えるAIの未来について論じてみたい。

AIはMD戦略そのものには使えない、単純な理由
AIはMDには使えない――
残念ながらこれは、確定した事実である。MDというのは「5適」といって、適価、適品、適所、適量、適時を正確にSKU単位で計画することだ。今のAIは、ある企業のブランドが持つ、「過去からの商品動向をみながら商品の売れ行きの動きの傾向をみて、将来を予想する」というものだが、決定的にこの技術に足りないのは、競合の動きをみていないということである。例えば、統計学的処理をおこなって将来のMD計画を立てたとする。おそらく、AIが示す傾向は正しいのだろうが、視点を消費者に変えれば、消費者は、そのブランドだけで買うということはない。
日本人のブランド個客率は20%程度だから、80%はブランドホッピング(あちこちのブランドを見比べる)をする。そして、ユニクロに似た商品がないかと考え(ユニクロが、日本のブランドの基準値になっている)、ユニクロに似たような商品があればそちらを買うし、ユニクロになくても、他の競合ブランドの方が価格が安い、あるいはデザインが秀逸な場合、そちらに購買が流れるのだ。
つまり、MDを正確に予測しようとするには、世の中の全てのブランドの製品動向を調べなければならないのである。だが実際は、消費者がレコメンド機能を使って、恐ろしいほどの数の商品比較を行っているわけだから、結果としてあたらないのである。
そこには、「競合」という視点がぽっかり抜けているからだ。
河合拓のアパレル改造論2024 の新着記事
-
2025/03/19
日本人の服がこの10年で「ペラペラ」になった本当の理由_過去反響シリーズ -
2025/03/12
ユニクロ以外、日本のほとんどのアパレルが儲からなくなった理由_過去反響シリーズ -
2025/02/18
ユニクロと競争せず“正しい”戦略ポジションを取っているアパレルとは -
2025/02/11
「あえて着ない」人が増加中 スーツ業界の復活はあるのか? -
2025/02/04
参入多いが難しいアパレルの多角化戦略、成功の秘訣は? -
2025/01/28
正しいTOC(制約理論)の理解 余剰在庫と欠品が激減する本当の理由!
この連載の一覧はこちら [61記事]
